US 2004/0187096 Al

difficult, due partly to the fact that instances of the class
implementations are created only at run-time. Class-
::MethodMaker, goes some way to help this by providing a
way to obtain a reference to the parent object of a given
object. By itself however, this is of limited value.

[0054] In one embodiment of the present invention a
mechanism is provided which enables a hierarchical tree of
objects to be navigated through by making use of function-
ality provided by Class::MethodMaker, as described below.

[0055] This navigation functionality may be provided, for
example, through a tree navigation class which provides a
method which accepts as an input string the relative location
of an attribute in a hierarchical arrangement (or tree) of
objects. For example, referring back to FIG. 1, suppose that
the refresh rate attribute 112 of the monitor object 108 is
dependent of the pixel clock attribute 107 of the video card
object 104. From within the monitor class declaration, a
string is defined giving the relative position within the tree
of the pixel clock attribute 107. For convenience, such a
string may use notation similar to that well known from
Unix and MS-DOS file systems. For example the string:

[0056]

[0057] may be used to indicate that the parameter video
memory is found in the object ‘two levels up’ from the
current object. The first level up being the monitor object
108 and the second level up being the video card object 104

[0058] Similarly, the string:

[0059] .\.\.\processor\cache_size may be used to
indicate that the parameter cache_size is an attribute
of the processor object which is located ‘three levels
up’ from the current monitor object and ‘in the
processor object’.

.\..\video_memory

[0060] An embodiment of this tree navigation functional-
ity is shown in flow diagram form in FIG. 2. The first step
200, is to obtain the string defining the location of the
required attribute and to parse the string to extract the path
information and the attribute required. Hereinafter, the
required attribute is referred to as a warp master value.
Using the tree navigation function the tree of objects may be
‘navigated’, steps 202 and 204, until the required object is
reached. When the destination object is reached, the required
warp master value is obtained, step 206, and the warp master
value is returned to the requesting object, step 208.

[0061] Additional dependency functionality between
classes may be built on top of the tree navigation function,
as will be described further below.

[0062] Embodiments of the present invention provide for
a declarative manner for defining three main types of
dependency relationship, as will be described below. The
first dependency type is where an attribute of one class (the
warp value) is dependent on the value of an attribute in
another class (the warp master value). The nature of this
dependency is such that should the warp master value
change, the warp value is automatically updated.

[0063] An embodiment outlining the mechanisms by
which the warp value dependency may be implemented will
now be described below.

[0064] FIG. 3 is a diagram showing an extract of the
configuration tree shown in FIG. 1. The dotted line 302

Sep. 23, 2004

indicates that the attribute refresh rate, 112, (the warp value)
of the monitor object 108 is dependent on the attribute pixel
clock, 107, (the warp master value) of the video card object
104. In order to define the nature of the dependency it is
necessary to define the relative location of the warp master
value, and the rule (hereinafter referred to as the warp rule)
to be applied to the warp value. For this example, assume
that the relationship between the refresh rate and the pixel
clock attribute is defined as: if the pixel clock value is
greater than 100 Mhz, then the maximum r fresh rate is 50
Hz, if the pixel clock value is greater than 200 Mhz then the
maximum refresh rate is 60 Hz, and if the pixel clock value
is greater than 300 Mhz then the maximum refresh rate is 70
Hz.

[0065] As previously described, the warp master value
may be defined as:

[0066] ..\..\pixel clock

[0067] The warp rule may, for example, be expressed as:
[0068] If warp_master_value >‘100’, max =‘50’;
[0069] If warp_master_value >‘200’, max =‘60’;
[0070] If warp_master_value >‘300’, max =70’;

[0071] A warp value attribute therefore has additional
associated information which defines the location (the warp
master value) and the nature of (the warp rule) the depen-
dency. One way in which this dependency information can
be associated with an attribute is to declare the attribute as
of an object type having appropriate data containers and
accessor methods for implementing the required function-
ality. For example, below is shown an example Value class
which may be used for this purpose:

VALUE CLASS - TABULATED VIEW
CILASS NAME: Value

ATTRIBUTES Type Comments
name created depending on type specified

min Integer

max Integer

warp__master__value String

warp__rule String

[0072] Thus, an attribute of type Value has data containers
for holding, amongst others, the name and type (e.g. integer,
enum etc.), any maximum or minimum values, and any
associated warp information. The accessor methods pro-
vided by the Value class may use this information, for
example, for ensuring that an attribute value is within the
limits defined by the maximum and minimum values. Simi-
larly, the Value class accessor methods also provide the
required functionality to interpret a warp rule from a string
and to transform this into the correct processing steps as
defined by the warp rule. In this way, much of the complex
functionality may be hidden from the user, for example, by
the Value object. For clarity, the following examples do not
show each attribute as being of a type Value, although it will
be appreciated that any attribute having associated warp
information may advantageously be declared as so.

[0073] 1t should be noted that the Value class itself may
not necessarily be created by a class-making module, and is
preferably defined using conventional techniques.



